
Code Smell Analysis in Cloned Java Variants:
the Apo-games Case Study

Luciano Marchezan
ISSE, Johannes Kepler University Linz

Linz, Austria

Wesley K. G. Assunção
ISSE, Johannes Kepler University Linz

Linz, Austria

Gabriela Michelon
ISSE, Johannes Kepler University Linz

Linz, Austria

Edvin Herac
ISSE, Johannes Kepler University Linz

Linz, Austria

Alexander Egyed
ISSE, Johannes Kepler University Linz

Linz, Austria

ABSTRACT
Families of software products are usually created using opportunis-
tic reuse (clone-and-own) in which products are cloned and adapted
to meet new requirements, user preferences, or non-functional
properties. Opportunistic reuse brings short-term benefits, e.g., re-
duced time-to-market, whereas creating long-term drawbacks, e.g.,
the need of changing multiple variants for any maintenance and
evolution activity. This situation is even worse when the individual
products have poor design or implementation choices, the so-called
code smells. Due to their harmfulness to software quality, code
smells should be detected and removed as early as possible. In a
family of software products, the same code smell must be identified
and removed in all variants where it is are present. Identifying
instances of similar code smells affecting different variants has
not been investigated in the literature yet. This is the case of the
Apo-Games family, which has the challenge of identifying the flaws
in the design and implementation of cloned games. To address
this challenge, we applied our inconsistency and repair approach
to detect and suggest solutions for six types of code smells in 19
products of the Apo-games family. Our results show that a con-
siderable number of smells were identified, most of them for the
long parameter list and data class types. The number of the same
smells identified in multiple variants ranged between 2.9 and 20.2
on average, showing that clone-and-ownmay lead to the replication
of code smells in multiple products. Lastly, our approach was able
to generate between 4.9 and 28.98 repair alternatives per smell on
average.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Maintaining software.

KEYWORDS
software product line, code smells, consistency checking, inconsis-
tency repair

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’22, September 12–16, 2022, Graz, Austria
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9443-7/22/09. . . $15.00
https://doi.org/10.1145/3546932.3547015

ACM Reference Format:
Luciano Marchezan, Wesley K. G. Assunção, Gabriela Michelon, Edvin
Herac, and Alexander Egyed. 2022. Code Smell Analysis in Cloned Java
Variants: the Apo-games Case Study. In 26th ACM International Systems and
Software Product Line Conference - Volume A (SPLC ’22), September 12–16,
2022, Graz, Austria. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3546932.3547015

1 INTRODUCTION
Software Product Line (SPL) [17] is a well-established approach to
systematically dealing with a family of software products. How-
ever, designing and implementing an SPL is a complex task [11].
Thus, the most common industrial practice for creating families
of software products is by the adoption of opportunistic reuse [1],
also known as clone-and-own [2]. When companies use opportunis-
tic reuse, new software products are created by cloning existing
software products and adapting them with the desired changes.
Eventually, the family of software products is re-engineered into
an SPL [1], or maintained product-by-product [6]. Nonetheless, as
it happens for traditional single-product software, software prod-
ucts created using opportunistic reuse also suffer from poor design
and/or implementation choices, the so-called code smells [4]. Code
smells make software systems hard to evolve and maintain and can
be harmful as they potentially lead to bugs or difficult program com-
prehension. In the case of a family of cloned systems, the existence
of code smells is even worse, as such flaws are propagated to several
products [7]. Hence, identifying and removing such code smells is
a challenging activity, requiring analysis of multiple products and
propagation of correction changes.

Families of software products, as well as code smells, are two
research topics that are widely investigated individually, but have
not been investigated together. The most related studies investigate
variability smells [3, 14] but not in the context of opportunistic
reuse, or variability debt [18] but not in the context of code smells.
This means that there is a gap in the literature, which is highlighted
in the work of Krüger et al. [7], introducing a challenge of “Code
Smell Analysis” for the Apo-Games case study.

There are different approaches proposed to identify code smells [5,
12, 13, 15] that could be applied to cloned variants. These ap-
proaches, however, are limited to focusing on specific code smells,
only applicable to specific artifacts (only source code), or do not rec-
ommend fixes for the smells identified. Based on these limitations,
in this paper, we apply an inconsistency detection approach [10] to
identify code smells in the Apo-Games variants. Our approach is
customizable by the use of Consistency Rules (CR) for finding the

https://orcid.org/0000-0003-3096-580X
https://orcid.org/0000-0002-7557-9091
https://orcid.org/0000-0002-9638-8569
https://orcid.org/0000-0003-3128-5427
https://doi.org/10.1145/3546932.3547015
https://doi.org/10.1145/3546932.3547015
https://doi.org/10.1145/3546932.3547015

SPLC ’22, September 12–16, 2022, Graz, Austria Marchezan et al.

smells. Variations of the approach were applied in different types
of artifacts [8, 10, 16], however, in this paper, we investigate how
our approach can be applied in product variants developed using
clone-and-own. Based on the code smells identified, our approach
generates repair alternatives for fixing them.

The results of the proposed solution were obtained by applying
our approach to identify six types of code smells in 13 Java and 6
Android products from the Apo-games family. The results show
that our approach was able to identify between 5 and 145 smells
per system. The smells identified, appeared multiple times, with
the most recurrent smell appearing 49 times across the game vari-
ants. Considering the recurrence of smells between the systems, we
observed that ApoSimple is the game that shares more smells with
the other products, 20.2 on average with each product. Further-
more, the results also indicated that Android-based games share
at least more than 10 smells with a specific group of Java products
(ApoSimple, ApoSimpleSud, and ApoSlitherLink). Considering the
repairs generated, the approach generated between 4.9 and 29.98
repair alternatives on average per product.

2 METHODOLOGY
To collect the data for this solution paper, we applied our inconsis-
tency detection and repair approach [10]. The key definitions of
our approach are described next:

Definition 1 - System: consists of elements which contain
properties. A property of an element is referred to by element dot
(.) property name, e.g., “Car.name”. A property can be of a primitive
type (e.g., Boolean, Integer, Float, or String) or a reference to other
elements. Hence, elements are instances of a specific type.

Definition 2 - Consistency Rule (CR): a condition defined for
a context that must be fulfilled by an element. This condition eval-
uates to a Boolean value as true (consistent) or false (inconsistent).
A consistency rule is defined for a context. The context is a meta
element, which is a type of a element (e.g., class or method).

Definition 3 - Repair: a non-empty set of repair actions that
fixes a specific inconsistency from the set of all possible inconsis-
tencies. A repair action identifies the operation, element, element
property, and, optionally, a concrete value to change the element
property. The following operations are possible: add an element to
the system or to a collection of elements, delete (del) an element
from the system or from a collection, andmodify (mod) an element
property to a given value.

Definition 4 - Repair Tree: a hierarchically ordered set of repair
nodes for a single inconsistency. The nodes of a repair tree define
whether the underlying repairs are alternatives (*) or sequences (+).
Repair alternative nodes follow the exclusive or-alternative (XOR)
principle where, from a set of repair alternatives, only one must be
selected for fixing an inconsistency. An example of a repair tree is
illustrated in Figure 1. This repair tree is created by applying a CR
(CR1) in an element called “play”, which represents a method in a
class called Streamer. CR1 states that methods can not have the same
signature, i.e., the same name and arguments. The method play,
however, appears twice in the class with the same signature. The
repair tree, suggests six alternative repairs (*): add a new argument
to the first method play, add a new argument to the second method
play, delete the first method play, delete the second method play,

R(CR1(play)) ∗

〈add,‘play’1.arguments〉
〈add,‘play’2.arguments〉
〈del,‘Streamer’.methods, ‘play’1〉
〈del,‘Streamer’.methods, ‘play’2〉
〈mod,‘play’1.name〉
〈mod,‘play’2.name〉

Figure 1: Repair tree example

modify the name of the first method play, or modify the name of
the second method play. As these are repair alternatives, executing
one of those will fix the inconsistency for CR1.

In the context of this work, we defined six CRs, which are used
to identify inconsistencies based on six types of code smells. Table 1
presents the six CRs. We defined specific metrics for considering
a smell, such as CR1 (in Table 1) that says a class with more than
20 fields is considered a Large Class. This number, however, was
defined based on our agreement relating to how many fields a class
may have until it becomes a smell. Such a value may vary depending
on the developer’s preferences. This value directly impacts the
results of the approach, as if the value was 10 instead of 20, probably
more smells would be identified. However, this is not an issue as the
CRs could be easily changed based on user preferences, allowing our
approach to be customizable for different contexts. Moreover, our
goal is not to obtain a unique result regarding the code smells found
in the variants, but rather to collect data about the smells to analyze
the applicability of our approach aswell as the potential relationship
between the smells and the variants’ similarities/differences. After
the identification of the code smells, our approach also generated
repair alternatives that could be used for fixing the smells. This
repair generation is based on the approach presented by [10]. The
CRs definition is given using the Abstract Rule Language (ARL),1
such definitions are not given in Table 1 due to space limitation.2
The six CRs were applied in 13 Java and six Android products of
the Apo-games family.

Our inconsistency detection and repair approach [10] was imple-
mented as part of the DesignSpace research project.3 The prototype
implementation is a service that runs on a server. This server can be
accessed by different engineering tools through the use of plugins.
These plugins work as a middleware that connect engineering tools
to the server. DesignSpace includes plugins for tools such as IntelliJ,
Eclipse, Visio, SolidWorks, and EclipsePapyrus, among others. To
analyze the code from the Apo-Games, we used the plugin for Intel-
liJ IDEA, which allows us to connect the IDEA to the DesingSpace
server, where our approach is running as a service. Once the IDEA
is connected, data about the project’s source code can be analyzed.
This data includes, but is not limited to: java files, classes, fields,
methods, and statements. Once this data is available on the server,
our approach can apply the CRs defined to find inconsistencies.4

1ARL documentation available at: https://isse.jku.at/designspace/index.php/Abstract_
Rule_Language
2CRs definitions are available at our online repository [9]
3Project documentation available at: https://isse.jku.at/designspace/
4A demo video showing how to use our approach to detect smells is available at the
DesignSpace wiki: https://isse.jku.at/designspace/index.php/Demos

https://isse.jku.at/designspace/index.php/Abstract_Rule_Language
https://isse.jku.at/designspace/index.php/Abstract_Rule_Language
https://isse.jku.at/designspace/
https://isse.jku.at/designspace/index.php/Demos

Code Smell Analysis in Cloned Java Variants: the Apo-games Case Study SPLC ’22, September 12–16, 2022, Graz, Austria

Table 1: Consistency rules used to identify smells

ID Smell Definition

CR1 Large Class Class has more than 20 fields
CR2 Large Class Class has more than 20 methods
CR3 Long Methods Method has more than 20 statements
CR4 Long Parameter List Method has more than 4 parameters
CR5 Primitive Obsession Class has more than 10 primitive fields
CR6 Data Class Class contains only crude methods

Table 2: Summary of consistency checking per system

System Size Files Evaluations Smells

Java
ApoSimple 40362 112 4377 102
ApoComm. 30314 78 3240 96
ApoDefence 27458 69 2537 85
ApoRelax 16136 56 2099 70
ApoPongBeat 12560 79 2497 67
ApoNotSoSim. 15042 57 2223 63
ApoSlitherLink 15571 62 2564 59
ApoIcarus 12577 59 1933 59
ApoMarc 11391 60 2028 51
ApoSimpleSud. 11087 43 1629 49
ApoBot 13537 48 1881 47
ApoStarz 14447 49 1913 44
TutorVolley 427 6 208 5
Android
BitsEngine 20974 57 2699 145
ApoMono 12727 24 1256 46
myTreasure 9410 27 1122 30
ApoClock 7217 28 1136 30
ApoSnake 6322 19 814 26
ApoDice 5274 19 823 22

3 RESULTS AND DISCUSSION
Table 2 shows a summary of the application of our approach in the
19 game variants. Column size describes the number of elements
extracted from the system into our server (files, classes, methods,
fields, statements). Column evaluations represents the number of
times that a CR was applied to the system’s element. For instance,
CR1 (Table 1) was applied in all classes in each system. Column
smells shows the total number of smells identified, i.e., the number
of evaluations that resulted to false (see Definition 2). The number
of smells identified (Table 2) ranged from 5 (TutorVolley) to 102
(ApoSimple) in the Java products and from 22 (ApoDice) to 145
(BitsEngine) in the Android products. As shown in the results, the
number of smells, in most cases, is impacted by the number of
elements, i.e., a bigger number of smells were identified in bigger
systems. Thus, our results lead us to conclude that:

Conclusion 1: Our approach can be used to identify code smells on
product variants. The number of smells identified is in most cases
impacted by the size of the product.

Table 3 shows results related to the smells identified per rule in
each system. CR5 was the only rule applied in which smells were
never found. For the other rules, CR4 (Long Parameter List) and
CR6 (Data Class) smells were the most common. Table 4 shows
the results regarding the recurrence of the same smell per CR. As
described, the smell that appeared more times was related to CR4,
appearing 49 times (column max) across the systems. Furthermore,
CR6 had the same smells identified 2.95 times on average (column

Table 3: Summary of consistency checking per CR

System Smells Count
CR1 CR2 CR3 CR4 CR5 CR6

Java
ApoBot 3 8 4 24 0 8
ApoComm. 4 14 12 54 0 12
ApoDefence 7 10 14 42 0 12
ApoIcarus 2 7 4 36 0 10
ApoMarc 1 7 2 31 0 10
ApoNotSoSim. 3 11 3 35 0 11
ApoPongBeat 2 8 6 38 0 13
ApoRelax 3 9 11 37 0 10
ApoSimple 7 16 10 56 0 13
ApoSimpleSud. 1 7 3 28 0 10
ApoSlitherLink 3 9 8 29 0 10
ApoStarz 3 7 3 22 0 9
TutorVolley 0 0 0 0 0 5
Android
ApoClock 0 2 3 19 0 6
ApoDice 0 2 1 12 0 7
ApoMono 2 4 5 30 0 5
ApoSnake 0 2 4 13 0 7
BitsEngine 5 8 6 114 0 12
myTreasure 3 3 5 12 0 7

Table 4: Smells recurrence grouped per CR

CR Min Max Mean Median Std

CR1 1 1 1 1 0
CR2 1 12 1.38 1 1.32
CR3 1 12 1.67 1 1.95
CR4 1 49 2.70 1 4.94
CR6 1 15 2.95 1 4.01

Mean). This shows that the smells found were not unique (except for
CR1), indicating that opportunistic reuse can duplicate the smells
across the system and across multiple systems. This conclusion is
further supported by the results shown in Table 5. These results
show how many smells were found between the systems. For in-
stance, ApoBot and ApoComm. have 27 smells in common. The
system that contained the most recurrent smells was ApoSimple,
sharing between four and 43 with all other systems, 20.21 on av-
erage. Another interesting result is the number of shared smells
considering the Android products as they share a few to zero smells
with most Java products, except for ApoSimple, ApoSimpleSud., and
ApoSlitherLink. The number of smells shared only among the An-
droid products is higher, as expected, as most of their code should
be similar considering their platform. Hence, we conclude that:

Conclusion 2: Opportunistic reuse may lead to a recurrence of the
same smells across multiple products.

The results presented in Table 5 are also important to understand
the effort required to fix the smells. For example, ApoIcarus and
ApoMarc have 14 smells in common. Thus, the fixes applied in these
14 smells in ApoIcarus could be propagated into ApoMarc to fix the
same 14 smells. Our approach was able to generate fixes (repairs)
as shown in Table 6. The number of repair alternatives generated
per smell ranged from 1 (TutorVolley) to 29.98 (ApoDefence) on av-
erage per Java product. For Android products, the average number
ranged from 6.76 to 13.86 per smell. The average number of repair
alternatives was similar for systems that share more smells. For

SPLC ’22, September 12–16, 2022, Graz, Austria Marchezan et al.

Table 5: Smells recurrence between products

Systems Java Systems Android Systems
A
po

Bo
t

A
po

Co
m
m
.

A
po

D
ef
en
ce

A
po

Ic
ar
us

A
po

M
ar
c

A
po

N
ot
So
Si
m
.

A
po

Po
ng

Be
at

A
po

Re
la
x

A
po

Si
m
pl
e

A
po

Si
m
pl
eS
ud

.
A
po

Sl
ith

er
Li
nk

A
po

St
ar
z

Tu
to
rV
ol
le
y

A
po

Cl
oc
k

A
po

D
ic
e

A
po

M
on

o
A
po

Sn
ak
e

Bi
ts
En

gi
ne

m
yT

re
as
ur
e

M
ea
n

St
d.

ApoBot 27 7 16 - - - 7 27 26 33 28 4 9 9 8 8 5 10 14.3 13.2
ApoComm. 9 25 - - - 9 40 37 32 29 4 9 11 9 10 7 10 19.2 22.5
ApoDefence - - - - 8 11 9 10 7 4 5 7 5 6 7 7 9.8 18.5
ApoIcarus 14 15 14 9 21 20 16 15 - 2 2 2 2 1 2 12.4 13.9
ApoMarc 32 35 28 - - - - - - - - - - - 8.4 15.8
ApoNotSoSim. 35 26 - - - - - - - - - - - 9 17.6
ApoPongBeat 30 - - - - - - - - - - - 9.5 18.7
ApoRelax 9 9 9 8 4 4 6 5 6 7 6 13.7 15.8
ApoSimple 38 43 29 4 10 11 10 11 7 11 20.2 24
ApoSimpleSud. 33 28 4 11 13 11 12 7 10 16.7 14.4
ApoSlitherLink 32 4 9 10 10 11 7 10 17.3 16.5
ApoStarz 4 7 8 8 8 6 9 14.2 13.1
TutorVolley 3 3 3 3 3 4 2.9 1.6
ApoClock 20 22 21 5 20 9.8 8.7
ApoDice 16 17 6 13 9.2 6.6
ApoMono 26 6 20 10.9 11.3
ApoSnake 6 15 9.9 8.1
BitsEngine 18 12.8 32.3
myTreasure 10.3 7.9

instance, ApoStarz has 44 smells in total, in which 32 are shared
with ApoSlitherLink (Table 5). This is an indication to the reason
the number of repairs alternatives generated (Table 6) for these
products is similar: they have the same median (7), similar average
(11.71 for ApoSlitherLink and 12.36 for ApoStarz), and similar stan-
dard deviation (15.58 for ApoSlitherLink and 14.94 for ApoStarz).
This indicates that repairs applied for one system may be reused for
others, reducing the effort of fixing the smells and propagating the
repairs. Further study regarding the change propagation necessary
for fixing the smells will be investigated in the future. Furthermore,
our approach provided a varied number of repair alternatives. This
is important as it gives developers flexibility when deciding how to
fix the smells. The results considering the repair generation lead us
to conclude that:
Conclusion 3: Recurrence of code smells may bring benefits con-
sidering how to repair them, as similar repairs may be reused for
products sharing the same smells.

4 THREATS TO VALIDITY
Internal Validity: An internal threat is the set of consistency rules
used to identify the smells. To mitigate this threat, we applied rules
to identify smells of different types considering different elements.
When considering the metrics used in the rules (e.g., number of
maximum parameters for CR4) we defined them based on our ex-
perience with software projects, as well as the suggestions found
in code smells catalogs.5

External Validity: An external threat is related to the generaliza-
tion of our results to another family of products. The results ob-
tained indicate how smells are created and shared among variants
created based on opportunistic reuse. However, as the Apo-Games
products are varied both in size and complexity, we argue that other
5One catalog is present in Refactoring Guru: https://refactoring.guru/

Table 6: Repair generation results

System Number of Repair Alternatives
Min Max Mean Median Std

Java
ApoBot 1 67 11.25 5 15.11
ApoComm. 1 215 12.79 7 25.59
ApoDefence 1 715 29.98 5 100.46
ApoIcarus 1 123 9.33 5 17.29
ApoMarc 1 49 6.29 5 7.37
ApoNotSoSim. 1 69 9.44 7 11.80
ApoPongBeat 1 59 8.64 5 10.97
ApoRelax 1 543 16.8 7 64.46
ApoSimple 1 351 18.50 5 48.82
ApoSimpleSud. 1 49 7.77 7 8.21
ApoSlitherLink 1 81 11.71 7 15.58
ApoStarz 1 49 12.36 7 14.94
TutorVolley 1 1 1 1 0
Android
ApoClock 1 69 7.53 3 14.48
ApoDice 1 43 4.90 3 8.73
ApoMono 1 115 13.86 5 24.17
ApoSnake 1 43 6.76 3 10.91
BitsEngine 1 419 12.82 5 39.81
myTreasure 1 71 11.66 3 17.29

products developed by applying opportunistic reuse might present
similar results. Furthermore, the Apo-Games is a publicly available
data-set of product variants created with clone-and-own. Other data
sets similar to this are not easily found.

5 CONCLUSION AND FUTUREWORK
In this paper, we present the first challenge solution related to
the identification of code smells across product variants created
with opportunistic reuse [7]. This analysis is important as it can
aid the understanding of how the use of clone-and-own can spread
the same smells across multiple variants. To collect the data re-
lated to code smells, we applied our inconsistency detection and
repair approach [10] using six CRs into a set of 19 products from
the Apo-games family. The results show that the most recurrent
smell appeared 49 times across one or more products on average.
Furthermore, the number of smells that were shared between two
products ranged from 2.9 to 20.2 on average. This indicates that the
application of opportunistic reuse may decrease the code quality of
the whole family, as problems are being cloned into other products.
However, this also indicates that the effort for fixing these problems
can be reduced, as repairs created to fix smells on one system may
be reused in other systems that have the same smells. Furthermore,
our approach allows flexibility when fixing the smells as the num-
ber of repair alternatives ranged between 4.9 and 28.98 per smell on
average. For future work, we plan to investigate the execution of
the repairs, applying a change propagation approach [8] that may
give us indications related to the effort required to fix code smells
among multiple products considering the reusability of the fixes.

ACKNOWLEDGMENTS
The research reported in this paper has been partly funded by the
Austrian Science Fund (FWF) (grant # P31989-N31 as well as grant
I4744-N) and by the Austrian COMET K1-Centre Pro2Future of
the Austrian Research Promotion Agency (FFG) with funding from
the Austrian ministries BMVIT and BMDW.

https://refactoring.guru/

Code Smell Analysis in Cloned Java Variants: the Apo-games Case Study SPLC ’22, September 12–16, 2022, Graz, Austria

REFERENCES
[1] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.

Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering 22,
6 (feb 2017), 2972–3016. https://doi.org/10.1007/s10664-017-9499-z

[2] Jorge Echeverría, Francisca Pérez, José Ignacio Panach, and Carlos Cetina. 2021.
An empirical study of performance using Clone & Own and Software Product
Lines in an industrial context. Information and Software Technology 130 (2021),
106444.

[3] Wolfram Fenske and Sandro Schulze. 2015. Code Smells Revisited: A Variability
Perspective. In Proceedings of the Ninth International Workshop on Variability
Modelling of Software-Intensive Systems (Hildesheim, Germany) (VaMoS ’15). As-
sociation for Computing Machinery, New York, NY, USA, 3–10.

[4] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[5] Mouna Hadj-Kacem and Nadia Bouassida. 2018. A Hybrid Approach To Detect
Code Smells using Deep Learning.. In ENASE. 137–146.

[6] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs
of Clone- and Platform-Oriented Software Reuse. In 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 432–444. https://doi.org/10.1145/
3368089.3409684

[7] Jacob Krüger, Wolfram Fenske, Thomas Thüm, Dirk Aporius, Gunter Saake,
and Thomas Leich. 2018. Apo-Games: A Case Study for Reverse Engineering
Variability from Cloned Java Variants. In Proceedings of the 22nd International
Systems and Software Product Line Conference - Volume 1 (Gothenburg, Sweden)
(SPLC ’18). Association for Computing Machinery, New York, NY, USA, 251–256.
https://doi.org/10.1145/3233027.3236403

[8] Luciano Marchezan, Wesley K. G. Assuncao, Roland Kretschmer, and Alexan-
der Egyed. 2022. Change-Oriented Repair Propagation. In Proceedings of the
International Conference on Software and System Processes and International
Conference on Global Software Engineering (Pittsburgh, PA, USA) (ICSSP’22).
Association for Computing Machinery, New York, NY, USA, 82–92. https:
//doi.org/10.1145/3529320.3529330

[9] Luciano Marchezan, Wesley K. G. Assunção, Gabriela Michelon, Edvin Herac,
and Alexander Egyed. 2022. Applying an Inconsistency Repair Mechanism for

clone-and-own Code Smell Analysis: the Apo-games Case Study (Evaluation Data).
https://doi.org/10.5281/zenodo.6617601

[10] Luciano Marchezan, Roland Kretschmer, Wesley KG Assunção, Alexander Reder,
and Alexander Egyed. 2022. Generating repairs for inconsistent models. Software
and Systems Modeling (2022), 1–33.

[11] Luciano Marchezan, Elder Rodrigues, Wesley Klewerton Guez Assunção, Maicon
Bernardino, Fábio Paulo Basso, and João Carbonell. 2022. Software product line
scoping: A systematic literature review. Journal of Systems and Software 186 (apr
2022), 111189. https://doi.org/10.1016/j.jss.2021.111189

[12] DavoodMazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary Valenta. 2016.
JDeodorant: Clone Refactoring. In Proceedings of the 38th International Conference
on Software Engineering Companion (Austin, Texas) (ICSE ’16). Association for
Computing Machinery, New York, NY, USA, 613–616. https://doi.org/10.1145/
2889160.2889168

[13] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. 2014. Mining version histories for detecting
code smells. IEEE Transactions on Software Engineering 41, 5 (2014), 462–489.

[14] Iuri Santos Souza, Ivan Machado, Carolyn Seaman, Gecynalda Gomes, Christina
Chavez, Eduardo Santana de Almeida, and Paulo Masiero. 2019. Investigating
Variability-Aware Smells in SPLs: An Exploratory Study. In 33rd Brazilian Sym-
posium on Software Engineering (Salvador, Brazil) (SBES 2019). Association for
Computing Machinery, New York, NY, USA, 367–376. https://doi.org/10.1145/
3350768.3350774

[15] Amjed Tahir, Aiko Yamashita, Sherlock Licorish, Jens Dietrich, and Steve Coun-
sell. 2018. Can You Tell Me If It Smells? A Study on How Developers Discuss
Code Smells and Anti-Patterns in Stack Overflow. In Proceedings of the 22nd In-
ternational Conference on Evaluation and Assessment in Software Engineering 2018
(Christchurch, New Zealand) (EASE’18). Association for Computing Machinery,
New York, NY, USA, 68–78. https://doi.org/10.1145/3210459.3210466

[16] Michael Alexander Tröls, Luciano Marchezan, Atif Mashkoor, and Alexander
Egyed. 2022. Instant and global consistency checking during collaborative engi-
neering. Software and Systems Modeling (2022), 1–27.

[17] Frank J Van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software product
lines in action: the best industrial practice in product line engineering. Springer
Science & Business Media.

[18] Daniele Wolfart, Wesley K. G. Assunção, and Jabier Martinez. 2021. Variability
Debt: Characterization, Causes and Consequences. In 20th Brazilian Software
Quality Symposium (SBQS).

https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1145/3529320.3529330
https://doi.org/10.1145/3529320.3529330
https://doi.org/10.5281/zenodo.6617601
https://doi.org/10.1016/j.jss.2021.111189
https://doi.org/10.1145/2889160.2889168
https://doi.org/10.1145/2889160.2889168
https://doi.org/10.1145/3350768.3350774
https://doi.org/10.1145/3350768.3350774
https://doi.org/10.1145/3210459.3210466

	Abstract
	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Threats to Validity
	5 Conclusion and Future Work
	Acknowledgments
	References

